Efficient stochastic Galerkin methods for random diffusion equations

نویسندگان

  • Dongbin Xiu
  • Jie Shen
چکیده

We discuss in this paper efficient solvers for stochastic diffusion equations in random media. We employ generalized polynomial chaos (gPC) expansion to express the solution in a convergent series and obtain a set of deterministic equations for the expansion coefficients by Galerkin projection. Although the resulting system of diffusion equations are coupled, we show that one can construct fast numerical methods to solve them in a decoupled fashion. The methods are based on separation of the diagonal terms and off-diagonal terms in the matrix of the Galerkin system. We examine properties of this matrix and show that the proposed method is unconditionally stable for unsteady problems and convergent for steady problems with a convergent rate independent of discretization parameters. Numerical examples are provided, for both steady and unsteady random diffusions, to support the analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on coefficient matrices from stochastic Galerkin methods for random diffusion equations

In a recent work by Xiu and Shen [D. Xiu, J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys. 228 (2009) 266–281], the Galerkin methods are used to solve stochastic diffusion equations in random media, where some properties for the coefficient matrix of the resulting system are provided. They also posed an open question on the properties of the coeffi...

متن کامل

Solving log-transformed random diffusion problems by stochastic Galerkin mixed finite element methods

Stochastic Galerkin finite element discretisations of PDEs with stochastically nonlinear coefficients lead to linear systems of equations with block dense matrices. In contrast, stochastic Galerkin finite element discretisations of PDEs with stochastically linear coefficients lead to linear systems of equations with block sparse matrices which are cheaper to manipulate and precondition in the f...

متن کامل

First order k-th moment finite element analysis of nonlinear operator equations with stochastic data

We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(α, u) = 0 for random input α(ω) with almost sure realizations in a ...

متن کامل

High-Order Collocation Methods for Differential Equations with Random Inputs

Recently there has been a growing interest in designing efficient methods for the solution of ordinary/partial differential equations with random inputs. To this end, stochastic Galerkin methods appear to be superior to other nonsampling methods and, in many cases, to several sampling methods. However, when the governing equations take complicated forms, numerical implementations of stochastic ...

متن کامل

A Kronecker Product Preconditioner for Stochastic Galerkin Finite Element Discretizations

The discretization of linear partial differential equations with random data by means of the stochastic Galerkin finite element method results in general in a large coupled linear of system of equations. Using the stochastic diffusion equation as a model problem, we introduce and study a symmetric positive definite Kronecker product preconditioner for the Galerkin matrix. We compare the popular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009