Efficient stochastic Galerkin methods for random diffusion equations
نویسندگان
چکیده
We discuss in this paper efficient solvers for stochastic diffusion equations in random media. We employ generalized polynomial chaos (gPC) expansion to express the solution in a convergent series and obtain a set of deterministic equations for the expansion coefficients by Galerkin projection. Although the resulting system of diffusion equations are coupled, we show that one can construct fast numerical methods to solve them in a decoupled fashion. The methods are based on separation of the diagonal terms and off-diagonal terms in the matrix of the Galerkin system. We examine properties of this matrix and show that the proposed method is unconditionally stable for unsteady problems and convergent for steady problems with a convergent rate independent of discretization parameters. Numerical examples are provided, for both steady and unsteady random diffusions, to support the analysis.
منابع مشابه
Note on coefficient matrices from stochastic Galerkin methods for random diffusion equations
In a recent work by Xiu and Shen [D. Xiu, J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys. 228 (2009) 266–281], the Galerkin methods are used to solve stochastic diffusion equations in random media, where some properties for the coefficient matrix of the resulting system are provided. They also posed an open question on the properties of the coeffi...
متن کاملSolving log-transformed random diffusion problems by stochastic Galerkin mixed finite element methods
Stochastic Galerkin finite element discretisations of PDEs with stochastically nonlinear coefficients lead to linear systems of equations with block dense matrices. In contrast, stochastic Galerkin finite element discretisations of PDEs with stochastically linear coefficients lead to linear systems of equations with block sparse matrices which are cheaper to manipulate and precondition in the f...
متن کاملFirst order k-th moment finite element analysis of nonlinear operator equations with stochastic data
We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(α, u) = 0 for random input α(ω) with almost sure realizations in a ...
متن کاملHigh-Order Collocation Methods for Differential Equations with Random Inputs
Recently there has been a growing interest in designing efficient methods for the solution of ordinary/partial differential equations with random inputs. To this end, stochastic Galerkin methods appear to be superior to other nonsampling methods and, in many cases, to several sampling methods. However, when the governing equations take complicated forms, numerical implementations of stochastic ...
متن کاملA Kronecker Product Preconditioner for Stochastic Galerkin Finite Element Discretizations
The discretization of linear partial differential equations with random data by means of the stochastic Galerkin finite element method results in general in a large coupled linear of system of equations. Using the stochastic diffusion equation as a model problem, we introduce and study a symmetric positive definite Kronecker product preconditioner for the Galerkin matrix. We compare the popular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 228 شماره
صفحات -
تاریخ انتشار 2009